3 research outputs found

    ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions fromresting state fMRI data of patients with Schizophrenia

    Get PDF
    We construct Functional Connectivity Networks (FCN) from resting state fMRI (rsfMRI) recordings towards the classification of brain activity between healthy and schizophrenic subjects using a publicly available dataset (the COBRE dataset) of 145 subjects (74 healthy controls and 71 schizophrenic subjects). First, we match the anatomy of the brain of each individual to the Desikan- Killiany brain atlas. Then, we use the conventional approach of correlating the parcellated time series to construct FCN and ISOMAP, a nonlinear manifold learning algorithm to produce low-dimensional embeddings of the correlation matrices. For the classification analysis, we computed five key local graph-theoretic measures of the FCN and used the LASSO and Random Forest (RF) algorithms for feature selection. For the classification we used standard linear Support Vector Machines. The classification performance is tested by a double cross-validation scheme [consisting of an outer and an inner loop of “Leave one out” cross-validation (LOOCV)]. The standard cross-correlation methodology produced a classification rate of 73.1%, while ISOMAP resulted in 79.3%, thus providing a simpler model with a smaller number of features as chosen from LASSO and RF, namely the participation coefficient of the right thalamus and the strength of the right lingual gyrus

    Independent component analysis: a reliable alternative to general linear model for task-based fMRI

    Get PDF
    BackgroundFunctional magnetic resonance imaging (fMRI) is a valuable tool for the presurgical evaluation of patients undergoing neurosurgeries. Although many pre-processing steps have been modified according to advances in recent years, statistical analysis has remained largely the same since the first days of fMRI. In this study, we examined the ability of Independent Component Analysis (ICA) to separate the activation of a language task in fMRI, and we compared it with the results of the General Lineal Model (GLM).MethodsSixty patients undergoing evaluation for brain surgery due to various brain lesions and/or epilepsy and 20 control subjects completed an fMRI language mapping protocol that included three tasks, resulting in 259 fMRI scans. Depending on brain lesion characteristics, patients were allocated to (1) static/chronic not-expanding lesions (Group 1) and (2) progressive/expanding lesions (Group 2). GLM and ICA statistical maps were evaluated by fMRI experts to assess the performance of each technique.ResultsIn the control group, ICA and GLM maps were similar without any superiority of either technique. In Group 1 and Group 2, ICA performed statistically better than GLM, with a p-value of < 0.01801 and < 0.0237, respectively. This indicated that ICA performs as well as GLM when the subjects are able to cooperate well (less movement, good task performance), but ICA could outperform GLM in the patient groups. When both techniques were combined, 240 out of 259 scans produced reliable results, showing that the sensitivity of task-based fMRI can be increased when both techniques are integrated with the clinical setup.ConclusionICA may be slightly more advantageous, compared to GLM, in patients with brain lesions, across the range of pathologies included in our population and independent of symptoms chronicity. Our findings suggest that GLM analysis may be more susceptible to brain activity perturbations induced by a variety of lesions or scanner-induced artifacts due to motion or other factors. In our research, we demonstrated that ICA is able to provide fMRI results that can be used in surgery, taking into account patient and task-wise aspects that differ from those when fMRI is used in research

    Standardization of presurgical language fMRI in Greek population: Mapping of six critical regions

    No full text
    Abstract Background Mapping the language system has been crucial in presurgical evaluation especially when the area to be resected is near relevant eloquent cortex. Functional magnetic resonance imaging (fMRI) proved to be a noninvasive alternative of Wada test that can account not only for language lateralization but also for localization when appropriate tasks and MRI sequences are being used. The tasks utilized during the fMRI acquisition are playing a crucial role as to which areas will be activated. Recent studies demonstrated that key language regions exist outside the classical model of “Wernicke–Lichtheim–Geschwind,” but sensitive tasks must take place in order to be revealed. On top of that, the tasks should be in mother tongue for appropriate language mapping to be possible. Methods For that reason, in this study, we adopted an English protocol that can reveal six language critical regions even in clinical setups and we translated it into Greek to prove its efficacy in Greek population. Twenty healthy right‐handed volunteers were recruited and performed the fMRI acquisition in a standardized manner. Results Results demonstrated that all six language critical regions were activated in all subjects as well as the group mean map. Furthermore, activations were found in the thalamus, the caudate, and the contralateral cerebellum. Conclusion In this study, we standardized an fMRI protocol in Greek and proved that it can reliably activate six language critical regions. We have validated its efficacy for presurgical language mapping in Greek patients capable to be adopted in clinical setup
    corecore